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ON THE SIMULTANEOUS CLASSIFICATION OF SEVERAL INDIVIDUALS

1. Introduction.

It has been usual in the study of classification

problems to consider the classification of one item at a

time. However, in practice one frequently deals with a whole

group of items each of which has to be assigned to its proper

category. There seem to be two main reasons why it is worth

considering the problem in this more general form.

First, one may gain in efficiency. This happens,

roughly speaking, because one can utilize the totality of ob-

servations to obtain estimates of unknown parameters. For

certain problems this has always been realized and procedures

obtained in this manner have been considered in the literature.

For certain other types it was pointed out first by Robbins

[1], and another example was given by Levene [2].

The other important reason for considering several

items simultaneously is that one is thus led to new formula-

tions. In particular, -problems arise where the definition of

the various categories is given not absolutely but in terms

of the other items in the group. A suggestive although not

This work was done at Columbia University and supported
in part by the USAF School of Aviation Medicine.
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too typical example is the assigning of grades in an examina-

tion or course.

Throughout the present discussion we shall assume

that the items to be classified are all of one kind, and that

all of them are to be distributed among the same categories.

Under these circumstances it is frequently reasonable to

measure the loss resulting from wrong decisions by the number

Of incorrect classifications. (By "risk" we shall then mean

the expected number of wrong classifications.) This is of

course nearly always a considerable oversimplification. How-

ever, it is necessary to work with standardized loss functions,

and the one suggested does have a concrete and intuitively ap-

pealing significance. It is comparable with the "simple" loss

functions utilized by Wald and with the formulation of hypothesis

testing in terms of the probabilities of errors given by Neyman

and Pearson.

For our purpose it is important to distinguish classi-

fication problems according to the nature of the items to be

classified. These may be on the one hand students, prospective

doctors, skulls, plants, etc. On the other hand they may be

varieties of wheat, different production processes or treat-

ments of a disease. The division of course is not completely

clear-cut. However, in the cases listed second one classifies

on the basis of independent, identically distributed variables;

that is, one is dealing with (statistical) populations and

makes the classification on the basis of a random sample from

the population.
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This Ls usually not the case in the group of problems

listed first. There the basis of classification is a set of

measurements, one each of a number of different characteris-

tics. The usual assumption attributes to this set of measure-

ments a multivariate normal distribution. This assumption

implies that the item being measured has itself been obtained

by means of a chance mechanism from some population of such

items; the replication of the experiment consists in drawing

another batch of items from this population. Suppose now that

it is desired to classify the items each into one of a number

of categories. Then each item of the total population falls

into one of these categories; the number in the categories is

in certain proportions. It follows that for each of the items

to be classified there is a definite probability of falling in-

to each of the categories. While thus the assumption of a priori

probabilities for the various categories seems inevitable when

one is classifying individuals, this assumption is usually in-

appropriate for the classification of populations.

The description of the items in the one case as in-

dividuals, in the other as populations is of course a somewhat

loose one. Thus, for example, each student in a class plays

the role of a population in the following problem. The know-

ledge of the student is to be tested by a true-false examina-

tion. One possible measure of his knowledge is the proportion,

among the totality of true-false questions that could be asked,

which he can answer. The questions that are asked in the ex-

amination can be thought of (in a very rough approximation) as

3
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a random sample from the totality of possible questions. Another

example of this kind is provided when we attempt to determine the

genotype of an individual through the number of recessives among

his offspring.

However, generally speaking, there is a fairly clear

distinction between the two types of problems. When we clas-

sify populations we are dealing with samples from distribu-

tions with unknown but fixed parameters. In the case of in-

dividuals, we assume multivariate distributions involving

parameters which themselves constitute random variables.

There is a further difference between the two types

of problems, which is not of a theoretical nature but which

nevertheless is of some importance. Roughly speaking, and ad-

mitting that there are important exceptions, we can say that

the simultaneous classification of populations usually involves

only a small number, say 2 to 10, populations, while the number

of individuals in a group to be classified frequently is con-

siderably higher. Thus it is of interest to develop an asymp-

totic theory for the classification of a large number of indi-

viduals. On the other hand, in the classification of populations

it is usually not too reasonable to assume a large number of

them. An asymptotic theory here would more likely be concerned

with large samples from each of the populations.

Classification problems differ not only through the

nature of the objects that are to be classified but also in

various respects according to the categories among which the

items are to be distributed. As a first distinction, we may

4
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either be dealing with k clearly distinct categories or with

classification according to a parameter with a continuous range

of variation which is broken up (sometimes somewhat arbitrarily)

to provide the categories. We shall here concern ourselves

mainly with the first of these two types of problems. Although

this has a somewhat restricted range of applications it-does

arise naturally in problems of taxonomy. In particular one

would expect it to be of increasing importance for the deter-

mination of genotypes, which is of interest in genetical and

anthropological research. (See for example r3]).

For the problem of k categories corresponding to

k distinct values of a characteristic parameter, there is a

further important subdivision according to the amount of in-

formation that is available concerning these categories. In

the simplest case the distribution of the observable random vari-.

ables is known in each of the categories, except possibly for

nuisance parameters. As a second possibility one may assume in-

stead of knowm distributions that measurements of a number of

individuals of known category (for example of known genotype

with respect to some simple gene) are available. Thus in the

case k = 2 we may have a number of Y's and Vs and want

to classify an X as belonging to the same category as either

the Y's or the Zs. For this problem it has been customary

in the literature to consider the classification only of a

single X. However, it seems clear that if several X's are

to be classified the procedure can be mich improved.

5
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This becomes particularly clear if we go one step

further and assume the distributions to be unknown but no

Y's and Z's available for guidance. Suppose, for example,

that Xl,-..,Xn  are each known to come from one of two normal

distributions with E(Xi) = 9 equal to either a or b and
2

r-X 2= 1, but that a and b are unknown. Suppose furtherXi

that the 9's are independent random variables P(Qi = a) = p.

It is then clear that for large n one will be able to obtain

good estimates of a, b, p and hence carry out a reasonable

classification of the Xts. The problem is closely related to

that of testing for outlying observations, which however is

usually treated under somewhat different assumptions (see for

example Grubbs [41 and Dixon [5]).

In the present paper we shall assume that all items

with whose classification we are concerned are to be classified

simultaneously. This is of course not always the case. Frequently

the classification has to be carried out serially. It seems

likely that in many cases the optimum serial classification pro-

cedure consists in classifying Trn  on the basis of observations

on i ,Tr as if the problem were the simultaneous classi-

fication of 7rl,, Tr . Hence the work done here should be
n

applicable at least in part also to this problem.

In the present paper we shall consider the classifi-

cation of individuals. For some simple problems the minimax

procedures are obtained. Since they become asymptotically in-

admissible as the number of individuals gets large other pro-

cedures are given that in the limit are minimax and admissible.

6
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In a second paper we hope to treat analogous problems

for the classification of populations. However here, as has

already been pointed out, we shall keep the number of popula-

tions fixed and consider the case of large samples from each

of the populations. This problem seems to be very much harder than

the one treated here, and it is not too clear what general results

to expect.

The present paper and the projected paper on the classi-

fication of populations are both related to a third paper on the

theory of selection. In the first two papers it is assumed

throughout that the categories are defined in absolute terms.

The third paper constitutes an attempt at a problem in which

this is not the case. It is concerned with classifying each of

s populations as good or bad, where a population is defined as

good if its quality is within given limits of that of the best

of the populations. Although the theory of the minimax procedures

is, as usual, easy (it involves an extension of the fundamental

lemma of Neyman and Pearson to the case of vectorvalued critical

functions) the application to particular cases presents diffi-

culties which the author has not been able to overcome.

I should like to acknowledge my indebtedness to Dr.

Howard Levene. In a seminar talk he presented his binomial ex-

ample of the phenomenon discovered by Robbins and contrasted

this with the minimax procedure. While much of the present

paper was already written at the time, Dr. Levene's remarks

suggested certain extensions of the work in progress.

7
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A complete copy of Robbins' paper [ 1J was not

available to me until after the present paper had been

completed. In [1] Robbins indicates a method of approach

which would seem to yield results, analogous to the ones

obtained here, for a much more general class of problems.

2. Effect of a priori probabilities.

One of the main characteristics of problems con-

cerning the classification of individuals is the assumption

of a priori probabilities for the various categories. At

first thought it might appear that the problem of the simul-

taneous classification of several individuals, as compared

with the classification of one individual at a time, is much

complicated by the fact that the a priori probabilities intro-

duce dependence. Whether or not this is so depends, as has

been pointed out by Mood [7] in a somewhat different context,

on the procedure by which the individuals being classified have

been obtained from the population. If the method is that of

random sampling there is no dependence. This was shovm by Mood

for variables taking on only the values 1 and 0 and clearly

holds in general. For let XI,**.,Xn be independently and

identically distributed, and let (il,...,im) be m integer

chosen at random from the set (1,006,n). Then the set of vari-

ables (Xil,. ',Xm ) is clearly independent of the set of re-

maining X's.

If on the other hand the group being classified has

been obtained by some other method, one will in general expect

8
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dependence. It follows that for the problems under considera-

tion it is important to know how the group that is being tested

was obtained.

When we are dealing with a random sample from a population

and if the proportion of the various categories in the popula-

tion are known, it is clear from the above remark that the

best method of simultaneous classification of the individuals

in the sample consists in simply classifying each individual

separately as best as possible without any regard to the re-

mainder of the sample.

If, however, the proportions in the various cate-

gories are not known it has always been recognized that one

should estimate these proportions from the sample. (See for

example [61.) This is closely conrected with the very in-

teresting results obtained by Robbins I. He also pointed

out that in the problem considered by him the minimax solution

makes no use of the information that the sample contains con-

cerning these proportions and That consequently the minimax

solution is very inefficient for large samples. Another inter-

esting example of the s e ature was studied by Levene. The

results of Robbins and Levene are considerably more startling

than the ones we shall find here, since in their examples there

is no assumption of any a priori probabilities. On the other

hand their results are more difficult to interpret since there

the parameter space changes with the sample so that there is no

clear-cut fixed frame of reference.

9
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3. An example.

Suppose we are interested in classifying n plants

according to their genetic composition with respect to a single

gene (a,A). We assume that the joint distribution of certain

measurements is known for each of the possible genotypes, and

is the same for dominants and hybrids. The plants come from

the cross of a hybrid with a plant that was either recessive

or hybrid. Hence it is knovn that the plants under considera-

tion constitute a sample from a binomial distribution where

the probability p of any one plant being recessive is either

1/4 or 1/2.

As throughout the paper we assume that the loss re-

sulting from wrong classifications is measured by the number

of these incorrect decisions, so that we want to minimize the

expected number of misclassifications. If we adopt the minimax

point of view it is easily seen that we shall act as if p

were known to have that one of the values 1/4, 1/2, say pO

which has the greater Bayes risk. (The Bayes risk correspond-

ing to a value pO of p is the minimum expected number of

misclassifications that can be achieved when p is known to

be equal to p0.) Each plant is then classified without re-

gard to the measurements on the other plants in such a way as

to maximize the probability of its correct classification.

Clearly, if n is at all large this procedure is

very unreasonable. For we can then determine with near cer-

tainty whether p = 1/4 or p = 1/2. In one case we shall

proceed as before, while in the other we shall modify our pro-

10
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cedure. As a result of this modification there will of course

be a slight increase in risk when p = p0  This stems from

the fact that there is a small but positive probability of

having decided on the wrong value of p. However, this in-

crease is balanced by a very substantial decrease in risk when

p has the other value.

Let us now consider the problem quantitatively. We

are concerned with random variables (presintably vectorvalued):

XIX 2 ,-''X n . The variable X. has probability density

p9 i(x). The Gls are independent random variables, each

capable of taking on the value 1 or 0. The probability

P = P = 1) is independent of i, and it is knowni that

either p = 1/2 or p = 1/4. The problem is to classify each

X. into category 1i or 60 as @i is 1 or 0.

If p were known, we would classify Xi into &l if

pi(xi) q

and into 60 if the opposite inequality holds. The ex-

pected number of misclassifications in this case is ap .n

where

a = q P PI(X) p + P /p (X) <)
p 0( P777

The minimax procedure clearly is the one appropriate to that

11
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value p0  of p (1/4 or 1/2) for which ap is larger. To be

specific, let us assume that pO = 1/2.

Let Y be the number of variables Xi  that are

classified into 6 1 by the minimax procedure. Then Y is

the number of successes in n independent trials with con-

stant probability

p(l-a) + (1-p) a = a + p(l-2a)

-a
of success. Hence n is a consistent estimate of p.

1 - 2a

Let us replace the minimax procedure by the following:

Y
If a > 3 use the minimax procedure

1-2a

If n 2 use the procedure appropriate for p = 1/4.
1- 2 a 8

To compute the risk of this new procedure suppose first that

p = 1/2. Then the expected number of misclassifications is

(1 (~ > p a P.I>Xk> n >12 2 0 1-23

12
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+ P 1  W) kj;I a > )]+ P(i -a-C p n 4~in

where B - 1.

n

It is easily seen that

n <Pp= -40.
f_ < =l

Hence the second term of (1) tends to zero. In the first term,

the first factor tends to 1, while the last factor tends to the

sum of the unconditional probabilities. Thus the ratio of the

risk to the minimax risk tends to 1 as n-- Oa.

An exactly analogous argument shows that when p = 1/4

the ratio of the new risk to the risk of the Bayes procedure cor-

responding to p = 1/4 also tends to 1.

We have used here for simplicity the frequency Y/n

to decide between p = 1/2 and p = 1/4. However more sensitive

methods are available, and one should expect these to yield

better results also for the classification problem. Thus one

might decide for p = 1/2 if

n log Po(Xi) + Pl(Xi)

where k is some suitable constant.

13
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It should also be pointed out that although the

procedure discussed here has good asymptotic properties, it

is not admissible. In fact it is easy to obtain the totality

of admissible procedures since by Wald's theory [81 this co-

incides in our case with the totality of Bayes solutions. But

there are only two parameter points: p = 1/2 and p = 1/4.

Hence a Bayes formulation assumes probabilities (' = l)

I- = P(p=l), and the class of all Bayes solutions is a one-

parameter family, one solution for each value of C0
These Bayes solutions are easy to obtain as follows.

Any classification procedure of n items into two categories

is a vectorvalued function O(x) = (l(X),'',$n(X)) ,

0 W ( 1. If x is observed, the i-th item is classified

into 61 with probability Oi(x), into 60 with probability

i (x). Instead of minimizing the Bayes risk of a procedure

$ corresponding to some given value , we shall maximize

the expected number of correct decisions, which is given by

C n

n k n-k

+ 1C) Lk 4 4k-O il", k)

where E 1 denotes

14
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E : E (X) +k (X) + 1-4. CX) +

+- L6. 1 'k0
-ki= ik ' Jn-k=O

with the summation (il, ... i k ) extendihg over all combinations

of k integers out of (1,.0.,n) and where Jll . 9in-k

denotes the remaining integers.

Thus we have to maximize an expression of the form

ZJf~a.jj W]) pi (x) d/.4 (x)

which is achieved by setting

whenever i a i j Pi ( x ) > 0

WjCx) = 0 whenever > aij Pi(x) < 0.

Unfortunately, although it is easy to write this

down explicitly, the resulting procedure does not seem very

manageable.

4. Asymptotic theory

The inefficiency for large samples of the minimax

solution, that we found here is not an isolated phenomenon.

15
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There are many cases of a sequence of problems Trn  for

each of which a minimax solution exists that is unique and

hence admissible. However for large n there exist other

procedures which at the expense of a slight increase of the

risk functions for some parameter values reduces the risk very

substantially for other values of the parameter.

These considerations lead to the following defini-

tion. Let the distribution of the observable random variables

depend on a parameter Q, and denote the risk function of a

decision procedure S by RS(G). Then we shall say that a

sequence of decision procedures is asymptotically non-admis-

sible if there exists a sequence of procedures S suchn
that

iR$* (9)limn 1 for all 9M! n --->oo Ric(e-

with strict inequality holding for some G. (The results of

section 2 show that in the example considered there the mini-

max procedure is asymptotically non-admissible.) In analogy

with the above definition one can define the notion of asymp-

totic admissibility and an asymptotic minimax procedure; this

latter notion was introduced by Wald 19J. It also seems useful

to define the following concept:

A sequence of procedures n (0) is said to be con-An

sistent if for each @

16
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[R(0) - 'n R,. (9)] =

We can then state the following obvious result. If for each

lim /nf Rfn(9) > 0
n -co 'n Sn

and if So is consistent, then S is asymptotically ad-n n

missible and minimax.

We shall now consider the asymptotic theory of the

simultaneous classification of a large number of individuals.

Let Xi be independently distributed with density p Cx)

where the @i are independent random variables taking on

the values 1,0 with probabilities p,q respectively. It is

desired to classify each X i according to its 9 in such

a way as to minimize the expeqted number of misclassifications.

For simplicity assume that has a continuous

distribution both when 9 is 1 and 0. The minimax pro-

cedure classifies Xi  into 61 if and only if

P..(x) > k, where k is determined by the condition

po(Xi )

0pk(X) / C= a, say) a <

17
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Theorem,

Let Y be the number of X's that are classified 61 by

the minimax procedure. Then as n--->o the following sequence

of procedures is consistent and hence asymptotically admissible

and minimax.

Classify X into 61 if and only if

YP (Xi) (1-a) - --
> n

n

(1-a) - Y
Proof. We note first that _ _ n is a con-

Y- a
n

sistent estimate of q/p. For Y/n is the frequency of

success in n independent trials with constant probability

(X) (+ pPI(X) >

= q a + p(l-a) = a + p(l-2a)

Y a
of success. Therefore -n tends in probability to p.

1 - 2a

But

(1-a) -Yn -2a

n -a

18
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and hence tends in probability to

1 .- 1
p p

Now the expected number of misclassifications when

p is true and we use the proposed procedure is

n [, P0 01()>+P P -( < °" n
nn

where Pol P indicate the distribution of X1 while it is

assumed that p is the probability of G being 1.
I i

If p were known we could use the above procedure

(1-a) -
with the quantity - -1 replaced by q/p. Hence in

IT a

order to prove our result we need only show that as n-*no

tp (
(2) fp) P(\..> y>a for i 1,0.

Now let Y 'be the number of X's among X2, .- ,X n  that satisfy

pl(X)
p~0 ~)> k. Then IY'-YI 1 1 and it is clear that we can re-

place the left hand side of (2) with

(Pl(Xl) (1-a) - Y

-a

n
19
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But X and Y are independent, and the result follows from

the following fact:

If X, U n  are independent, U n--a in probability,

and a is a continuity point of X, then

P(X > Un) -. P(X > a).
n

It should be pointed out that the theorem would

presumably remain valid if we replaced our estimate of q/p

by any other consistent estimate. The next stage would be

to consider the speed with which the limiting risk is ap-

proached, as one uses different estimates of q/p.

We have stated the theorem for the case of only two

categories. The extension to the case of s categories is

easy and we shall o, ly sketch it briefly. We now assume that

each 9, can take on s values, say 1,2,-.-,s, and that each

is to be classified into one of the classes el,''" 6sX i ~

according to the value of @i" If - is the a priori

probability of any one @ taking on the value j, the as-

sociated Bayes solution classifies an X into 6i if

(3) iWi P(x) = max - px)i JWIJ

Let Ri be the set of points x for which (3) holds, and let

a.. = P (XR ).ii j i

If Y is the number of X's classified as i under the
i
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Bayes procedure associated with some particular set of a priori

probabilities (1Tr,.-., 7r), then Y is the number of out-

comes i in n multinomial trials in which the outcome i

has constant probability

SI7j a,

Assume that > 0 for i =, 600s and let , ,

be the solutions of the system of equations

^ _ Yia = -

Then the procedure that classifies Xr into 6 if

Ai P(Xr = max A

p (r pj(Xr)

is consistent.

5. Stratification!

It frequently happens that there is more information

available than was assumed in the last section. Suppose namely

that the population is stratified (for example by sex, age, pre-

vious training, etc.) We still have to classify each individual

into one of a number of classes, however the proportions of

individuals in the various categories presumably differ among

the various strata.

Let us consider the simplest case of two categories

and two strata. The individuals of the two strata will be de-

21
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noted by Y and Z respectively. Each Y has a probability

density pqI(y) ) i = 0 or 1; each Z has a density

p ,i(Z) =0 or 1. Let us put

P(i= 1) = p

P(2, = 1) =p

and let 7T be the proportion of Y's in the total population.

It is clear that if p 4 pt the procedure discussed in the

last section, which takes no account of the stratification,

will lose its asymptotic properties. For let us assume for a

moment that p, p-, 7T are known. Then the (unique) optimum pro-

cedure will differ in its treatment of the Y's and Z's.

On the other hand the procedure that minimizes the risk under

the assumption that all individuals are drawn at ranadom from
I

a population with a proportion 7TP + (1-Tr) p of individuals

belonging to class 61, will classify all of the individuals

according to the same rule, and hence has a higher risk. Since

the asymptotic risk, when the various parameters are estimated,

has been shown to approach the Bayes risk when they are known,

the result follows.

It is also clear now that in the present case the

following procedure will be consistent. Ve estimate separately

and p, say by " and p and classify a Y into if

22
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p1  A p IZ

p0 (Y)and a Z into ()if PO) >p * As a matter

of fact this procedure retains consistency even when p = pt

however this is an indication of the weakness of the definition

rather than the quality of the procedure.

Taking account of stratification not only improves

the risk function but it also avoids the necessity of making

assumnptions about how the sample is divided between the strata.

In the first treatment we assumed random sampling from the total

population. However if the stratification is such that the

strata differ markedly in the proportions of the various cate-

gories this asstuption is likely to be fallacious.

While thus from a statistdcal point of view there

are considerable advantages in not using the minimax procedure,

this, at least in certain problems, also entails serious dis-

advantages of an ethical nature. WVhile the issue is brought out

particularly clearly in connection with stratification, it is

actually present in the whole discussion. If each individual

can be either 0 or 1 and if some siginificance attaches to

the classification, one feels strongly that each person should

be classified on the basis of his ovn performance without regard

to that of the other individuals being classified.

At first one may feel that the fault lies with the

loss function. We have stated it as our task to minimize the

total average number of misclassifications. However exactly the

same phenomenon occurs if we are interested in classifying only

23
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individual i. If we want to minimize the probability of mis-

classifications we will estimate the proportion of O's in

the population, and proceed as we did before.

The moral conflict arises with the assumption of ran-

dom sampling from the population. The individual does not

consider himself drawn at random from a population. For him

0 is. not a random variable but a parameter. Thus, if we

want to meet this objection we have to forego the advantage

of the assumption of random sampling and treat the 's as

parameters.

It might seem that even then the difficulty re-

mains because of the possibilities brought out by Robbins.

This is however not so. The phenomenon described by Robbins

occurs if we express the risk in terms of the frequency of

's in the group that is being classified. But this is

inappropriate if we are concerned with the classification

of the single individual. Then 0i is 0 or 1, and the

risk must be expressed in terms of these two possibilities

and not an extraneous frame of reference.

6. On a.general class of problems.

The problems discussed here have certain features

in common with a large class of statistical problems. As we

shall indicate, it seems likely that the results we obtained

in the special cases apply more generally.

In the examples we considered the distribution of

the observable random variables was, as is usually the case,

only partially known. However -- and here they differ from
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the classical problems of statistics -- even if the distribu-

tion were known this would still not imply knowledge of the

correct decision since this depends on the values of some un-

observable random variables. The same situation occurs, for

example, in all prediction problems.

Suppose in general that we are concerned with a situ-

ation in which a decision is to be made on the basis of ob-

servable random variables XI,***,Xn  whose joint distribution,

for all n, depends on a certain *Oarameter 9. It is assumed

that as n--->o one can estimate G consistently. The correct

decision depends not directly on 9 but on certain unobservable

raudem variables the distribt'on1 of which also involves 9.

In such cases it seems to be true rather generally

that the minimax procedure is asymptotically inadmissible.

For suppose that 9 were knov and let Go be that

value of 9 to which corresnonds the biggest (Bayes) risk. In

some cases the minimax solution is, for all n, the Bayes

solution corresponding to this worst value of the parameter.

(This is the case in the example considered in section 2 and

in the prediction of the outcome of a single binomial trial

(see [0J).) In other cases the least favorable distribution

(if one exists) is not concentrated at this one value since it

takes into account both the difficulty of determining the correct

value of G and the difficulty of determining the correct value

of the non-observable variables when 9 is known. However, as

n--9oo, the dif.:iculty of determining the correct value of 9

gradually disappears, and hence the least favorable distribution

25



PROJECT NUMBER 21-49-004, REPORT NUMBER 6

does teitd to concentrate around the "worst" value of 0. The

asymptotic inadmissibility of the Bayes solution corresponding

to the least favorable dis]tribution (i.e.,of the minimax

procedure) now follows as before from the fact that we can

deteruine the time value of 9 quite accurately and hence

do not have to take the pessimistic attitude of the minimax

solution.

At the same time we see that the Bayes procedure

corresroniding to the estimated value 0 of 9 is consistent

and he nce asyT,-totically adlissible and minimax. For the con-

trlbution to the risk resulting from having the wrong value

of P tends to zero, and hence the total risk tends to the

isk one w:ould be left with even if G were known.

In some problems of the kind being coasidered one

can avoid the cif icuities of the mi-imax procedure by adopting

the n tion of L.J. Savage, of iniimizing the maximum regret.

It is easy to see, for example, in prediction problems with

squared error as loss function that the prediction of a random

vor lable that Lili izes the maxLoum regret is the same as the

!.BJ ,ilax esi,_mate of E(Y).

It should finally be pointed out t]at the asympJtotic
inadrpissibility of nininax procedures may also occur in classical

problems where the difficulties discussed in the present section

do not arise. An exa.irle in question is the estimation of a

biciial -robability [103.
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